
ISSN 1007-0214 08/13 pp 440–452
DOI: 10.26599 / TST.2018.9010084
Volume 23, Number 4, August 2018

Hybrid Routing by Joint Optimization of Per-Flow Routing and
Tag-Based Routing in Software-Defined Networks

Gongming Zhao, Liusheng Huang∗, Ziqiang Li, and Hongli Xu

Abstract: In recent years, Software-Defined Networks (SDNs) have become a promising technology to improve

network utilization. However, limited flow table size and long deployment delays may result in low network

performance in large-scale networks and a poor user experience. While a typical solution to this issue is routing

aggregation (i.e., wildcard routing), the aggregation feasibility problem and reduced network performance may be

encountered. To address this dilemma, we first design a novel wildcard routing scheme, called the Tag-based Rule

Placement Scheme (TRPS). We then formulate a Hybrid Routing by Joint optimization of Per-flow routing and Tag-

based routing (HR-JPT) problem, and prove its NP-hardness. An algorithm with a bounded approximation factor is

designed for this problem, and the proposed methods are implemented on a Mininet platform. Extensive simulation

results show that our methods are efficient for wildcard/hybrid routing. For example, our proposed tag-based

wildcard rule placement scheme can reduce the number of required rules by about 65% on average compared

with previous wildcard routing methods. Our proposed hybrid routing algorithm can increase network throughput

by about 43% compared with existing hybrid routing solutions.

Key words: Software Defined Networks (SDNs); load balancing; per-flow routing; tag-based routing; flow table size
constraint; deployment delay constraint

1 Introduction

The concept of Software-Defined Network (SDN) is a
new networking paradigm that decouples the control and
data forwarding planes of network devices[1, 2]. More
specifically, the controller constitutes the control plane
of an SDN, and determines the forwarding path of each
flow with a centralized control manner. SDN switches

• Gongming Zhao, Liusheng Huang, Ziqing Li, and Hongli
Xu are with the School of Computer Science and
Technology, University of Science and Technology of
China, Hefei 230027, China, and also with Suzhou
Institute for Advanced Study, University of Science and
Technology of China, Suzhou 215123, China. E-
mail: zgm1993@mail.ustc.edu.cn; lshuang@ustc.edu.cn;
lzqrush@mail.ustc.edu.cn; xuhongli@ustc.edu.cn.

∗ To whom correspondence should be addressed.
Manuscript received: 2017-08-05; revised: 2018-01-18;
accepted: 2018-01-30

constitute the data plane of an SDN and the response
for data forwarding of each flow. Because the controller
features global visibility and full control capacity over
the whole network, SDN users can composite application
programs run on top of the controller to monitor and
manage entire networks (e.g., traffic engineering, heavy
hitter identification, and proper routing[2]) in an efficient
and centralized manner. Thus, SDN has been used in
different fields, such as campus networks and data center
networks.

The growth of Internet services has promoted the
popularity of many large-scale data intensive applications
(e.g., video conferences, cloud services, and financial
data analysis). As a result, large-scale networks are
increasingly experiencing burst flows. For example, in a
practical datacenter network with 1500 server operational
clusters, the average arrival rate can reach 105 flows per
second for core switches[3], which means, if per-flow

Gongming Zhao et al.: Hybrid Routing by Joint Optimization of Per-Flow Routing and Tag-Based Routing in· · · · · · 441

routing is performed in this situation, tens of thousands
flow rules may be required on each switch. However,
due to the high price and energy consumption of Ternary
Content Addressable Memory (TCAM) units, an SDN
switch usually contains only a few thousand flow rules[4].
Recent testing results show a 3.3 ms delay when inserting a
single flow rule into a flow table on a commodity switch[5].
Deployment delays are critical for many applications, e.g.,
the authors of Ref. [6] showed that a 100 ms delay causes
a 1% drop in revenue at Amazon and a 400 ms delay
causes a 5%–9% decrease in traffic at Google. Thus,
considering flow table and deployment delay constraints,
per-flow routing is impractical in large-scale networks.

To solve the flow table and deployment delay
constraints problem, the classical design principle is
destination host-based aggregate routing (i.e., wildcard
routing). Unfortunately, as many datacenter networks
contain millions of virtual or physical hosts, this scheme
also requires tens of thousands of TCAM rules to deploy
host-based wildcard routing in large-scale networks[7].
Thus, the deployment delay and table size constraints
in large-scale networks cannot be solved by destination
host-based aggregate routing, especially for core switches,
which may process a vast number of flows. Besides,
the network performance (e.g., load balancing) cannot be
guaranteed by aggregate routing.

This paper first studies wildcard routing and proposes
a novel scheme called the Tag-based Rule Placement
Scheme (TRPS). We then focus on the Hybrid Routing
by Joint optimization of Per-flow routing and Tag-based
routing (HR-JPT) problem. To the best of our knowledge,
our work is the first to deploy hybrid routing by joint
optimization of per-flow routing and tag-based routing
under flow table size and deployment delay constraints for
load balancing. The main contributions of this paper are as
follows:

(1) We propose a TRPS for wildcard routing. This
scheme uses a tag to aggregate flows to overcome
the prefix/suffix-based flow aggregation constraint and
combines proactive rule placement and reactive rule
placement. Here, the rules between switches are pre-
deployed and the tag of flows are reactively installed to
significantly reduce the deployment delay and number of
rules required for wildcard routing, especially for core
switches.

(2) We formally define HR-JPT problem and prove
its NP-hardness. An approximation algorithm, Rounding-
based Route Joint Deployment (RRJD), with a bounded
approximation factor is proposed to solve this problem.

(3) We implement the proposed TRPS solution and its
hybrid routing algorithm on a Mininet platform. Extensive
simulation results show that our proposed tag-based
wildcard rule placement scheme can reduce the number of
required rules by about 65% on average compared with
previous wildcard routing methods and that our proposed
hybrid routing algorithm can increase network throughput
by about 43% compared with existing hybrid routing
solutions.

The rest of this paper is organized as follows. Section 2
illustrates the TRPS mechanism for wildcard routing. The
network model and the definition of the HR-JPT problem
are introduced in Section 3. We propose the RRJD to
deal with the HR-JPT problem and analyze its approximate
performance in Section 4. The testing results are given
in Section 5 and Section 6 discusses related works. We
conclude this paper in Section 7.

2 TRPS

As shown in Fig. 1, a typical datacenter network
architecture consists of three-level trees of switches. A
three-tiered design can typically support tens of thousands
of terminals[8]. Under this circumstance, the bottleneck
of the datacenter networks usually is the core switches,
which encounter a massive number of flows[9]. Due to the
development of Open vSwitch and Overlay technologies,
the resource shortages of edge switches have been
eased[10], which means the switches v1,v2,v3,v4,v5, and
v6 are highly likely to encounter resource shortages and
deployment delay problems in Fig. 1. Our proposed
scheme mainly concentrates on solving the deployment
delay and flow table constraints of core switches (or
internal switches).

An Openflow-based flow rule mainly contains match
fields, priority, counters, and actions. Match fields match
against packet headers and consist of in port, vlan id,
eth dst, eth src, ip dst, and ip src, among others. Note
that, with the update of the Openflow protocol, the number
of supported match fields is increased and some reserved
match fields are maintained. Thus, we can define an

Fig. 1 Typical datacenter interconnect topology.

442 Tsinghua Science and Technology, August 2018, 23(4): 440–452

SwID field (by choosing one reserved match field) as a
new match field to perform the TRPS. The work in Ref. [9]
showed that the operation of adding or deleting a tag is
easy for the controller, so the tag-based method is practical.
The scheme details are as follows.

The scheme first installs the proactive switch-level
routing rules. The controller discovers the entire network
topology using the discovery interface in Openflow[11]. The
controller then assigns a unique ID (e.g., v1,v2,v3) for each
switch and computes the shortest path of each switch pair.
Next, the controller sends flow-mod messages[11] to all of
the switches to install switch-level routing rules. In other
words, we assume the network contains m switches, for
each switch, m− 1 switch-level rules are installed for all
other switches based on SwID. Note that, the number
of switches is much smaller than the number of terminals
in a network and much smaller than the number of flow
rules[7], which means the number of proactive rules is far
fewer than the number of flow rules on each switch.

The proposed TRPS mechanism builds reactive routing
rules when the ingress switch reports the packet header of
a flow to the controller. This process may be summarized
as follows: (1) The controller first floods the APR request
to all the edge switches using packet-out messages[11] and
locates the destination terminal. (2) The controller then
chooses one optimal path for this flow and sends flow-mod
messages to install rules on the corresponding switches.
The path selection algorithm will be addressed in the next
two sections of this paper. (3) If the controller performs
per-flow routing, all of the switches along with the selected

path should be reactively installed with one rule for this
flow via a method identical to that for traditional per-flow
routing. (4) If the controller performs tag-based routing, a
command is sent to the ingress switch to install one rule,
which matches flows with this destination terminal and
adds this egress switch’s ID to the corresponding packet
headers. Thus, all of the matched flows can be forwarded
by proactive tag-based routing rules. The controller also
sends a command to the egress switch to install one
rule, which matches flows with the destination terminal,
deletes the ID, and forwards matched flows to the port that
connects to the terminal.

A few points should be emphasized here: (1) With
the development of virtualization technology, the edge
switches of datacenters have been mainly changed to Open
vSwitches, which means the resource shortages of edge
switches have been eased[10]. (2) The priorities of per-flow
routing rules are higher than those of tag-based routing
rules, which means we can perform per-flow routing for
some specific flows. (3) The SwID field is transparent
to users and can easily be implemented on today’s SDN
architectures.

To obtain a better understanding of this mechanism,
an example is presented in Fig. 2. The controller first
assigns four unique SwID: v1,v2,v3,v4 to corresponding
switches. Next, the controller installs the tag-based switch-
level routing rules into the switches. We only list the dst
and SwID match fields in Fig. 2 for simplicity and only
analyze switch v1 to illustrate switch-level rules. v1 installs
three switch-level rules for the three other switches. For

Fig. 2 Illustration of the tag-based rule placement scheme. The two plots on the left denote the flow tables of switches v1

and v4. The SwID rules are pre-deployed when the topology is created. The dst rules are reactively deployed based on the
controller commands. When v1 receives packets destined for u2 with IP address 2.0.0.1, this switch will set SwID= v4 for
the flow and forward this flow based on switch level. When v1 receives packets destined for u3 with IP address 3.0.0.1, this
switch will forward the flow based on per-flow level.

Gongming Zhao et al.: Hybrid Routing by Joint Optimization of Per-Flow Routing and Tag-Based Routing in· · · · · · 443

example, the rule “SwID = v4,output = 2” denotes
that flows labeled SwID = v4 will be forwarded to port
2. Note that all flows labeled with this SwID have the
same egress switch v4, which will be introduced later.
After all the proactive rules are installed, three proactive
rules are found on each switch and two flows arrive: one
from 1.0.0.1 to 2.0.0.1 (denoted by γ1) and the other
from 1.0.0.1 to 3.0.0.1 (denoted by γ2). We assume that
the controller decides to forward γ1 by tag-based routing
and forward γ2 by per-flow routing. Thus, the controller
only needs to interact with the ingress switch v1 and
egress switch v4 to install tag-based routing rules. For the
ingress switch v1, we install a rule that matches flows with
destination 2.0.0.1, this rule attaches SwID to v4 so that
they can be forwarded by tag-based routing rules. For the
egress switch v4, we install a rule that forwarded flows to
the port 1, which matches flows with destination 2.0.0.1,
so that these flows can reach the destination terminal. The
controller needs to interact with v1,v3, and v4 to install
three rules for γ2, similar to the traditional per-flow routing
rules.

By building rules on switch levels, TRPS presents the
following advantages compared with other schemes:

• Reduction of the number of required flow rules.
The number of switches is always much smaller than the
number of hosts in a network. For example, assuming n
switches and m hosts (m ≫ n), if we build rules on the
host level, a maximum of m× (m−1) rules is needed for
the core switch. Even we build destination terminal-based
rules, the core switch also needs m rules. By using TRPS,
however, only a maximum of n−1 rules is needed for the
core switches.

• Decreases in deployment delay. TRPS combines
proactive routing with reactive routing. Since switch-level
routing has been deployed in advance, the controller only
needs to install two rules on the ingress and egress switches
for each request. Letting ψ denote the average length of
all the paths, ψ clearly increases along with the growing
network and is usually greater than 5. The traditional
scheme usually needs to install ψ rules on average for each
request. As such, our proposed wildcard routing scheme is
efficient in reducing deployment delays.

• Relief of the controller load. In our TRPS, the
controller only needs to send flow-mod commands to the
ingress and egress switches. Fewer packet-in messages[11]

are also sent by the switches to the controller. For example,
terminal u1 sends packets to terminal u5 in Fig. 1 via
the traditional scheme, and the controller sends flow-mod
commands to v7,v3,v1,v4, and v9 to install flow rules. If

the flow rule is deployed on v7 before v3, switch v7 can
then forward this flow to switch v3. However, since switch
v3 has not deployed the specified flow rule for this flow,
or cannot find the matched rule, v3 will report the packet
header to the controller, which results in several packet-
in calls. In this example, the switch may encounter five
(the length of path) packet-in calls at most. Using the
TRPS, however, only one packet-in call (on the ingress
switch v7) and at most two packet-in calls (on the ingress
switch v7 and the egress switch v9) are encountered. Thus,
TRPS can greatly decrease the communication between
switches and the controller and retain the stability of the
latter.

In summary, TRPS has the potential to achieve
smaller deployment delays and maintain stable network
performance with limited TCAM rules.

3 Definition of HR-JPT

In this section, we first introduce the network and flow
models and then illustrate the motivation of hybrid routing.
Finally, we define the HR-JPT problem and prove its NP-
hardness.

3.1 Network and flow models

An SDN typically consists of three device sets: a terminal
set, U = {u1, ...,um}, with m = |U |; an SDN switch set,
V = {v1, ...,vn}, with n= |V |; and a cluster of controllers.
The controllers response to route selection of all the flows
and do not participate in packet forwarding in a network.
These switches and terminals comprise the data plane of an
SDN. Thus, in view of the data plane, the network topology
can be modeled by a directed graph G=(U∪V,E), where
E is the link set in the network. For ease of expression,
let c(e) and T (v) denote the capacity of link e ∈ E and
the number of available rules of switch v ∈ V in graph G,
respectively.

A set of bursty flows, denoted by Γ = {γ1, ...,γ|Γ |},
arrive in the network. By collecting flow statistics
information from switches, the controller can estimate
the size (or intensity) of each flow γ ∈ Γ as f(γ).
Similar to many previous works[12, 13], in this paper, we
adopt the unsplittable flow mode because of its simplicity,
which means each flow can be forwarded through only
one forwarding path to save flow rules and reduce the
complexity of flow management.

3.2 Motivation for hybrid routing

TRPS can save flow rules resources, reduce deployment
delays, and relieve the load of the controller to a greater

444 Tsinghua Science and Technology, August 2018, 23(4): 440–452

extent than other routing schemes. However, TRPS is
a wildcard routing scheme, which means many flows
may be aggregated and forwarded through the same
path. Thus, this scheme may cause link congestion and
decrease network performance (e.g., network throughput,
transmission delay, and packet loss).

To address this dilemma, we can leverage the strength
of per-flow routing to improve network performance. A
flow can be forwarded through an individual forwarding
path by per-flow routing, so we can select some (elephant)
flows to be forwarded through per-flow routing to improve
network performance and other flows to be forwarded
through tag-based wildcard routing to save flow table
resources, decrease deployment delays, and relieve the
controller load.

In the next section, we study the HR-JPT problem.

3.3 Hybrid routing by the HR-JPT problem

For each flow γ ∈ Γ , we explore a set of feasible paths
Pγ from source to destination. The tag-based path h(γ)
also belongs to the set Pγ (i.e., h(γ) ∈ Pγ ,∀γ ∈ Γ).
Note that, each tag-based path (i.e., h(γ)) can be shared
by many flows and is pre-deployed on the switch level
(which may be the shortest path from ingress switch to
egress switch) as illustrated in Section 2. For ease of
expression, let P ′

γ = Pγ − h(γ) denote the feasible per-
flow paths set of flow γ, and pie denote the set of ingress
and egress switches of path p ∈ Pγ . Our objective is to
select one optimal path for each flow to achieve network
load balancing under flow table size and deployment delay
constraints.

We formulate the HR-JPT problem into a non-linear
program as follows. Let variable ypγ ∈ {0,1} denote
whether flow γ selects the feasible path p ∈ Pγ . zuv
denotes whether a tag-based flow rule must be installed
for the terminal u on switch v. H is the union of all
h(γ). Because the deployment delay is linearly associated
with the number of rules that will be installed on each
switch, we can use a conversion factor ω(v) to combine
the two constraints as one constraint for simplicity. For
example, the number of available rules T (v) on switch
v is 2000 and we want to be able to forward these flows
within 3.3 s (denoted by T0). About 3.3 ms (denoted by t0)
is necessary to insert a rule[5], which means, considering
the flow table constraint, we can only install 2000 rules
at most. Considering the deployment delay constraint, we
can only install 3.3 s ÷ 3.3 ms = 1000 rules at most. Thus,
let ω(v) = 0.5 satisfy both constraints. In other words, we
set

ω(v)=min

{
T0

t0 ·T (v)
,1

}
, ∀v ∈V (1)

HR-JPT solves the following problem:

min λ,

s.t.

∑
p∈Pγ

ypγ =1, ∀γ ∈Γ ;

ypγ 6 zd(p)v , ∀v ∈ pie,p∈H;∑
γ∈Γ

∑
v∈p:p∈P′

γ

ypγ+
∑
u∈U

zuv ;6ω(v)·T (v), ∀v∈V ;∑
γ∈Γ

∑
e∈p:p∈Pγ

ypγf(γ)6λ ·c(e), ∀e∈E;

ypγ ∈{0,1}, ∀p,γ;
zuv ∈{0,1}, ∀u∈U,v ∈V

(2)
The first set of equations means that each flow will be

assigned a feasible path from source to destination. Thus,
for each flow γ ∈ Γ , only one path p ∈ Pγ can be chosen
(i.e., ypγ = 1) as the final forwarding path. The second
set of inequalities denotes that, if a flow γ ∈ Γ chooses
h(γ) as its forwarding path, then the ingress and egress
switches of this forwarding path h(γ) should install a tag-
based rule for destination u (i.e., zuv = 1). As illustrated
in Section 2, we only need to install rules on the ingress
and egress switches of the tag-based path. The third set
of inequalities denotes the flow table and the deployment
delay constraints. The fourth set of inequalities expresses
that the traffic load on each link e does not exceed the
λ·c(e), where λ is the load balancing factor. Our objective
is to minimize λ.

Theorem 1 The HR-JPT problem defined in Eq. (2) is
an NP-hard problem.

Proof We consider a special example of the HR-JPT
problem, in which no flow table and deployment delay
constraints exist. We are then able to deploy the routes of
all the flows in an SDN to achieve load balancing under a
link capacity constraint. In other words, the flow in the
network becomes an unsplittable multi-commodity flow
with minimum congestion problem[14], which is NP-hard.
Since the multi-commodity flow problem is a special case
of our problem, the HR-JPT problem is also NP-hard. �

4 Description of the HR-JPT Problem
Algorithm

Due to its NP-hardness, HR-JPT problem is difficult
to optimally solve. In this section, we first present
an approximation algorithm RRJD to solve the HR-JPT
problem (Section 4.1) and then analyze the approximate

Gongming Zhao et al.: Hybrid Routing by Joint Optimization of Per-Flow Routing and Tag-Based Routing in· · · · · · 445

performance of this algorithm (Section 4.2). Finally, we
give the complete algorithm description (Section 4.3).

4.1 Approximation algorithm to solve the HR-JPT
problem

This section presents the RRJD algorithm to solve the HR-
JPT problem. To solve this problem in polynomial time,
we first relax the integer program to a linear program as in
Eq. (3).

min λ,

s.t.

∑
p∈Pγ

ypγ =1, ∀γ ∈Γ ;

ypγ 6 zd(p)v , ∀v ∈ pie,p∈H;∑
γ∈Γ

∑
v∈p:p∈P′

γ

ypγ+
∑
u∈U

zuv6ω(v) ·T (v), ∀v∈V ;∑
γ∈Γ

∑
e∈p:p∈Pγ

ypγf(γ)6λ ·c(e), ∀e∈E;

ypγ ∈ [0,1], ∀p,γ;
zuv ∈ [0,1], ∀u∈U,v ∈V

(3)
By relaxing this assumption, ypγ and zuv are fractional,

which means we assume that each flow can be split and
forwarded through multiple paths. Since Eq. (3) is a linear
program, we can solve it in polynomial time with a linear
program solver (e.g., CPLEX[15]). Assume that the optimal
solution is denoted by ỹpγ ,∀γ,p and the optimal result is
denoted by λ̃. As the linear program is a relaxation of
the HR-JPT problem, λ̃ is a lower-bound result for this
problem.

More specifically, for each flow γ ∈ Γ , we select a
feasible path p ∈ Pγ with the probability of ỹpγ for flow γ.
If ∃p∈Pγ , ŷ

p
γ =1, flow γ selects p∈Pγ as its finally route

path. For tag-based routing, x̂u
v =max{ŷpγ ,∀d(p) = u,v ∈

pie,p ∈ H,γ ∈ Γ}. In this manner, we have determined
the final route paths for all flows. The RRJD algorithm is
formally described in Algorithm 1.

We now discuss the time complexity of the RRJD
algorithm. The first step mainly solves the linear program.
Since the linear program contains a polynomial number
of variables, polynomial times are required to solve this
program. The second step uses randomized rounding for
route selection, with the time complexity f · |Γ |, where
f is the maximum number of feasible paths for all flows
and |Γ | is the number of flows. As a result, the total time
complexity of RRJD is polynomial.

4.2 Approximate performance analysis

We give two well-known lemmas for probability analysis.
Theorem 2 (Chernoff Bound) Given n independent

Algorithm 1 RRJD: Rounding-based Route Joint
Deployment

1: Step 1: Solving the Relaxed HR-JPT Problem
2: Construct a linear program LP1 based on Eq. (2)
3: Obtain the optional solution ỹ

4: Step 2: Route Selection for Load Balancing
5: Derive an integer solution ŷpγ by randomized rounding
6: for each switch v ∈V , each terminal u∈U do
7: x̂u

v =max{ŷpγ ,∀d(p)=u,v ∈ pie,p∈H,γ ∈Γ}
8: if x̂u

v =1 then
9: Install a tag-based rule on switch v for destination u

10: end if
11: end for
12: for each flow γ ∈Γ do
13: for each routh path p∈Pγ do
14: if ŷpγ =1 then
15: Appoint path p for flow γ

16: end if
17: end for
18: end for

variables: x1,x2, ...,xn, where ∀xi ∈ [0,1]. Let µ =

E[
∑n

i=1
xi]. Then, Pr

[
n∑

i=1

xi > (1+ϵ)µ

]
6 e

−ϵ2µ
2+ϵ , where

ϵ is an arbitrarily positive value.
Theorem 3 (Union Bound) Given a countable set

of n events: A1,A2, ...,An, each event Ai happens with
a possibility Pr(Ai). Then, Pr(A1 ∪A2 ∪ ... ∪An) 6
n∑

i=1

Pr(Ai).

We define a variable α as follows:

α=min{min{ λ̃cmin

f(γ)
,γ ∈Γ},min{T (v),v ∈V }} (4)

Link Capacity Constraint. The load of link e from
each flow γ is defined as a variable xe,γ . We have

E

[∑
γ∈Γ

xe,γ

]
=
∑
γ∈Γ

E [xe,γ] =
∑
γ∈Γ

∑
e∈p:p∈Pγ

ỹpγf(γ)6 λ̃c(e)

(5)
Combining Eq. (5) and the definition of α in Eq. (4),

we have
xe,γ ·α
λ̃c(e)

∈ [0,1],

E

[∑
γ∈Γ

xe,γ ·α
λ̃ ·c(e)

]
6α

(6)

Then, by applying Theorem 2, we assume that ρ is an
arbitrary positive value. Thus

Pr

[∑
γ∈Γ

xe,γ ·α
λ̃ ·c(e)

> (1+ρ)α

]
6 e

−ρ2α
2+ρ (7)

Now, we assume that

446 Tsinghua Science and Technology, August 2018, 23(4): 440–452

Pr

[∑
γ∈Γ

xe,γ

λ̃ ·c(e)
> (1+ρ)

]
6 e

−ρ2α
2+ρ 6 F

n2
(8)

where F is a function of network-related variables (such
as the number of switches n) and F → 0 when the network
size grows.

The solution for Eq. (8) is expressed as

ρ>
log

n2

F
+

√
log2 n

2

F
+8α log

n2

F
2α

, n> 2 (9)

Lemma 1 The proposed RRJD algorithm achieves the

approximation factor of
4logn

α
+ 3 for link capacity

constraints.

Proof Set F =
1

n2
. Equation (8) is transformed into

Pr

[∑
γ∈Γ

xe,γ

λ̃ ·c(e)
> (1+ρ)

]
6 1

n4
,ρ> 4logn

α
+2 (10)

By applying Lemma 3, we have

Pr

[∨
e∈E

∑
γ∈Γ

xe,γ

λ̃ ·c(e)
> (1+ρ)

]
6

∑
e∈E

Pr

[∑
γ∈Γ

xe,γ

λ̃ ·c(e)
> (1+ρ)

]
6

n2 · 1

n4
=

1

n2
, ρ> 4logn

α
+2 (11)

Note that the third inequality holds, a maximum
of n2 links exist in a network with n switches. The

approximation factor of our algorithm is ρ+1=
4logn

α
+3.
�

Flow Table Constraint. Note that the approximate
performance analysis of the deployment delay constraint
is identical to the analysis of the flow table constraint,
thus we omit it here to preserve space. Similar to that for
the link capacity constraint, we define random variables δ,
tv,γ , and F . Similar to Eqs. (5)–(8), we have

δ>
log

n

F
+

√
log2 n

F
+8α log

n

F
2α

, n> 2 (12)

We give the approximation performance as follows.

Lemma 2 After a rounding process, the total number
of flow rules on any switch v will not exceed the constraint

T (v) by a factor of
3logn

α
+3 for the HR-JPT problem.

Proof Set F =
1

n2
. Apparently F → 0 when n→∞.

With respect to Eq. (12), we set

δ=
log

n

F
+log

n

F
+4 ·α

2 ·α
=

6logn+4 ·α
2 ·α

=
3logn

α
+2 (13)

Then Eq. (13) guarantees 1+δ=
3logn

α
+3 and F =

1

n2
,

which concludes the proof. �
Approximation Ratio. With these analyses, we

know the approximation factors for the link capacity
and flow table constraints (deployment delay constraint)

are
4logn

α
+3 and

3logn

α
+3, respectively. By using

the proposed RRSD approximate algorithm, we can

scale flows by a factor of
4logn

α
+3 to satisfy the

link capacity constraint and by a factor of
3logn

α
+3

to satisfy the flow table constraint (deployment delay
constraint). For example, let α = 100, n = 100,
then, the approximation factors for the link capacity
and flow table constraints (deployment delay constraint)
are 3.08 and 3.06, respectively. Thus, our RRSD
approximate algorithm can achieve the constant bi-criteria
approximation for the HR-JPT problem.

4.3 Complete RRJD algorithm description

While the RRJD algorithm can almost achieve the
bi-criteria approximation performance for the HR-JPT
problem, the randomized rounding mechanism may not
guarantee that the flow table size constraint (or deployment
delay constraint) is always met. Here, we describe the
complete RRJD algorithm to satisfy the flow table size
constraint (deployment delay constraint). The complete
algorithm is formally described in Algorithm 2.

The complete version of the algorithm consists of three
steps, the first two of which are identical to those in
Algorithm 1. The third step will remove some per-flow
rules so that the flow table size constraint (deployment
delay constraint) is satisfied on all switches. Initially, V ′

denotes the set of switches that violate the flow table size
constraint (deployment delay constraint). We rank all of
these switches in decreasing order of deployment delay.
For each switch v ∈ V ′, the set of flows that pass through
switch v and use the per-flow rules is denoted by Γ f

v . We
rank these flows in decreasing order of the value ỹh(γ)γ ,
which indicates the probability of being forwarded by tag-
based rules. For each flow γ ∈Γ f

v , we remove the per-flow

Gongming Zhao et al.: Hybrid Routing by Joint Optimization of Per-Flow Routing and Tag-Based Routing in· · · · · · 447

Algorithm 2 Complete RRJD Algorithm Description

1: Step 1: Same as that in Algorithm 1
2: Step 2: Same as that in Algorithm 1
3: Step 3: Removing Some Rules
4: Put all switches that violate the flow table size and deployment delay

constraints in set V ′

5: while V ′ ̸=∅ do
6: Select a switch v ∈ V ′ with the maximum deployment delay (the

maximum number of required flow rules)
7: The flows that pass through switch v and use the per-flow rules

are denoted by Γf
v

8: Rank γ ∈Γf
v in the decreasing order of ỹh(γ)γ

9: for each flow γ ∈Γf
v do

10: Remove the per-flow rules on all switches along the per-flow
path of flow γ and forwarded by tag-based path

11: if The constraints on switch v is satisfied then
12: break
13: end if
14: end for
15: V ′ =V ′−{v}
16: end while

rules on all switches along the per-flow path of flow γ and
forwarded by the tag-based path until the constraints on
switch v are satisfied. We then remove switch v from set
V ′. This iteration is terminated when no other switch exists
in set V ′.

5 Simulation Results

In this section, we first introduce the simulation settings
and performance metrics (Section 5.1). We then compare
the proposed method with previous methods by running
extensive simulations (Section 5.2). Note that our
simulations are executed on the Mininet platform[16] with a
POX controller, which is a widely-used simulator specified
for SDN.

5.1 Performance metrics and setting

The proposed scheme and algorithm focus on datacenter
networks, so we choose two typical datacenter topologies:

(1) The first topology, in the simulation, denoted by
topology (a), is the fat-tree topology[7], which is widely
used in many datacenter networks. The fat-tree topology
has 16 core switches, 32 aggregation switches, 32 edge
switches, and 128 servers. Similar to Ref. [17], we
assume that each server hosts 15 Virtual Machines (VMs)
to simulate a realistic scenario. Thus, the total number of
terminals is 1920.

(2) The second topology, denoted by (b), is a two-
dimensional HyperX topology[18]. This topology can
make better use of available bisection bandwidths than the
famous fat-tree topology, thus, it is also widely used in
datacenter networks[19]. The topology contains 81 access

switches and 1620 terminals.
Each simulation is executed 100 times, and the

numerical results are averaged. We use the power law for
the flow-size distribution, where 20% of all flows account
for 80% of traffic volume[20].

Since this paper studies both wildcard routing and
hybrid routing, we let TRPS denote all of the flows that
are forwarded by tag-based routing. The RRJD denotes
the hybrid routing by joint per-flow routing and tag-based
routing. We compare these two proposed methods with
four other methods:

(1) The first method is Per-Flow Routing (PFR). We
adopt the multi-commodity flow method using randomized
rounding for unsplittable flows in an SDN. Note that the
method may drop some flows to satisfy flow table and
deployment delay constraints.

(2) The second method is wildcard routing. We
perform the widely-used OSPF protocol, which involves
terminal-based routing.

(3) The third method is DomainFlow (DFW). DFW
divides the network into two parts: one part using wildcard
rules and the other part using PFR rules. This benchmark
is mainly compared with RRJD.

(4) The last method is the optimal result for the linear
programLP1 based on Eq. (2), denoted by OPT. SinceLP1

is the relaxed version of the HR-JPT problem, OPT is a
lower-bound for HR-JPT.

We mainly adopt five different metrics for performance
measurement. The first two metrics are the maximum
and average numbers of required flow rules on all
switches. After executing these algorithms, we can obtain
the number of flow rules used on each switch, and compute
the maximum/average numbers of flow rules used on all
switches. To measure network performance, the metrics
Link Load Ratio (LLR) and Network Throughput (NT)
are used. LLR can be obtained by measuring the traffic
load l(e) of each link e. Then, LLR is defined as LLR =

max{l(e)/c(e),e∈E}. NT can be obtained by measuring
the total traffic amount through the network. The last
metric is communication overhead to/from the controller.
When new flows arrive at the switch, and no matched flow
entry is produced, the switch will send packet-in messages
to the controller, and the controller will send flow-mod
messages to the corresponding switches for flow entry
installment. The communication overhead is also called
control overhead.

5.2 Simulation evaluation

We run six groups of experiments on two topologies to test

448 Tsinghua Science and Technology, August 2018, 23(4): 440–452

the five different metrics of these algorithms. The flow
table constraint is 5 000[4]. The first two groups of
experiments observe the maximum/average number of
required flow rules by increasing the number of flows.
The results are shown in Figs. 3–6. Due to the flow table
constraint, the maximum number of flow rules is 5 000.
Both figures show that wildcard routing (i.e., OSPF and
TRPS) requires fewer rules than the other methods. In
fact, our proposed TRPS wildcard routing scheme requires
a fewer number of rules than OSPF. For example, when
40×104 flows exist in topology (b), TRPS can reduce
the maximum/average number of required rules by about
20%/65% compared with OSPF. Note that, because TRPS

Fig. 3 Maximum number of flow rules versus number of
flows for topology (a).

Fig. 4 Maximum number of flow rules versus number of
flows for topology (b).

Fig. 5 Average number of flow rules versus number of
flows for topology (a).

Fig. 6 Average number of flow rules versus number of
flows for topology (b).

can significantly reduce the number of rules for the core
switches and have less impact on the edge switches, the
performance of the average number of required rules
is much better. These four figures indicate that TRPS
requires a fewer number of rules than OSPF.

The third group of experiments observes the NT by
changing the deployment delay constraint. The default
number of flows is 40×104. The results in Figs. 7 and 8
indicate that RRJD can achieve better NT than DFW. For
example, when 40×104 flows exist in topology (a), our
proposed RRJD scheme can improve NT by about 43%
compared with DFW. The performance of PFR is poor due

Fig. 7 Network throughput versus deployment delay for
topology (a).

Fig. 8 Network throughput versus deployment delay for
topology (b).

Gongming Zhao et al.: Hybrid Routing by Joint Optimization of Per-Flow Routing and Tag-Based Routing in· · · · · · 449

to the low speed of the method.
As illustrated in Figs. 9 and 10, the fourth group of

experiments measures the change in NT by increasing the
number of flows. When 60×104 flows exist in topology
(a), our proposed RRJD can improve the NT by about
30%/90% compared with DFW/PFR while using a similar
number of rules. While the NT of OSPF and TRPS
are similar, our proposed TRPS can reduce the required
number of rules by about 65% on average (illustrated in
Fig. 5). The poor performance of PFR indicates that the
method is impractical for large-scale networks.

The results of the fifth group of experiments are
presented in Figs. 11 and 12. PFR has an exceptionally

Fig. 9 Network throughput versus number of flows for
topology (a).

Fig. 10 Network throughput versus number of flows for
topology (b).

Fig. 11 Link load ratio versus number of flows for
topology (a).

Fig. 12 Link load ratio versus number of flows for
topology (b).

low LLR because of the flow table constraint and its
dropping of many flows. Our proposed RRJD algorithm
can reduce LLR by about 23% compared with DFW while
using a similar number of rules. All three figures show
that the performances of OPT and RRJD are very similar,
which means the proposed algorithm can elegantly solve
the HR-JPT problem and obtain a feasible solution that is
close to that produced by the lower-bound OPT.

The last group of simulations evaluates the
communication overhead between the controller and
switches. The results in Figs. 13 and 14 show that wildcard
routing (OSPF and TRPS) can greatly reduce the control

Fig. 13 Communication overhead versus number of flows
for topology (a).

Fig. 14 Communication overhead versus number of flows
for topology (b).

450 Tsinghua Science and Technology, August 2018, 23(4): 440–452

overhead because many flows can be forwarded by
wildcard rules without being reported to the controller. For
example, when 60×104 flows exist in topology (a), our
proposed TRPS can reduce communication overhead by
about 75% compared with OSPF. Moreover, our proposed
RRJD can reduce overhead by about 30% compared with
DFW.

From these simulations, we can make some
conclusions. (1) Our proposed TRPS (the version
including only tag-based wildcard routing) is better than
OSPF (terminal-based wildcard routing). For example,
TRPS can reduce the number of required rules by about
65% on average and reduce the overhead by about 75%
compared with OSPF. (2) Our proposed RRJD increases
NT by about 43% (or 30%) compared with DFW by
changing the number of rules (or changing the deployment
delay). Moreover, RRJD can reduce the communication
overhead by about 30% and reduce the LLR by about
23% compared with DFW. (3) The performance of our
proposed RRJD is similar to that of the lower-bound OPT,
which means the approximation algorithm is efficient in
solving the NP-hard problem.

6 Related Work

Since routing is a critical issue to achieve better network
performance in an SDN, many related works to handle the
routing problem have been reported. An obvious way to
address the problem is to deploy one individual rule for
each flow to provide fine-grained route selection. Al-Fares
et al.[21] designed a dynamic flow scheduler for datacenter
networks that sets up a new TCAM rule for every new flow
in the network. However, as networks experience more
and more flows while commodity switches only contain a
few thousand TCAM rules[4], PFR is impractical to use in
large-scale networks.

Some works are devoted to aggregate traffic (i.e.,
wildcard routing). iSTAMP[22] uses some of the TCAM
rules for aggregation traffic, and similar works have been
studied by Refs. [23, 24]. Unfortunately, the aggregation
feasibility problem in a network was encountered in these
works. Some studies have considered wildcard routing.
References [5, 14], for example, adopted destination
terminal-based aggregate routing. However, as many
current datacenter networks contain millions of virtual or
physical end terminals, this scheme also requires tens of
thousands TCAM rules to deploy terminal-based wildcard
routing in large-scale networks[7]. Previous works suffer
from poor network performance due to the many flows that

are forwarded via the same path, causing link congestion.
To achieve balance between network performance

and flow table constraints, the combination of PFR
and wildcard routing has been proposed. Devoflow[4]

combined pre-deployed wildcard rules and dynamically-
established exact rules, and DomainFlow[25] divided the
network into two parts, one part using wildcard rules
and another part using exactly matching rules. However,
these works did not detail how default paths are deployed
and only mainly adopted the OSPF protocol for wildcard
routing. To date, the performance of the OSPF protocol
cannot be guaranteed.

This paper focuses on wildcard routing and proposes
the TRPS. We also study the HR-JPT problem. To the
best of our knowledge, our work is the first to deploy
the HR-JPT problem under flow table constraints for load
balancing.

7 Conclusion

In this paper, we proposed a novel TRPS for wildcard
routing and studied the HR-JPT problem. The test results
show the high efficiency of both the TRPS and HR-JPT. In
the future, we will consider an update scheme and online
algorithm.

Acknowledgment

This paper was supported by the National Natural Science
Foundation of China (Nos. 61472383, 61472385, and
U1301256), and the Natural Science Foundation of Jiangsu
Province in China (No. BK20161257).

References

[1] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker, Ethane: Taking control of the enterprise,
ACM SIGCOMM Computer Communication Review,
vol. 37, no. 4, pp. 1–12, 2007.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
Openflow: Enabling innovation in campus networks, ACM
SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[3] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken, The nature of data center traffic:
Measurements & analysis, in ACM SIGCOMM Conference
on Internet Measurement 2009, Chicago, IL, USA, 2009,
pp. 202–208.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee, Devoflow: Scaling
flow management for high-performance networks, ACM
SIGCOMM Computer Communication Review, vol. 41,

Gongming Zhao et al.: Hybrid Routing by Joint Optimization of Per-Flow Routing and Tag-Based Routing in· · · · · · 451

no. 4. pp. 254–265, 2011.
[5] H. Huang, S. Guo, P. Li, B. Ye, and I. Stojmenovic,

Joint optimization of rule placement and traffic engineering
for qos provisioning in software defined network, IEEE
Transactions on Computers, vol. 64, no. 12, pp. 3488–
3499, 2015.

[6] C. Wei, R. Buffone, and R. Stata, System and method
for website performance optimization and internet traffic
processing, US Patent 8112471, Feb. 7, 2012.

[7] X. Lu and Y. Xu, Sfabric: A scalable sdn based large
layer 2 data center network fabric, in 2015 IEEE 23rd
International Symposium on Quality of Service (IWQoS),
2015, pp. 57–58.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, A scalable,
commodity data center network architecture, in ACM
SIGCOMM Computer Communication Review, vol. 38,
no. 4, pp. 63–74, 2008.

[9] S. Banerjee and K. Kannan, Tag-in-tag: Efficient flow table
management in sdn switches, in International Conference
on Network and Service Management, 2014, pp. 109–117.

[10] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen,
Scotch: Elastically scaling up sdn control-plane using
vswitch based overlay, in Proceedings of the 10th ACM
International on Conference on Emerging Networking
Experiments and Technologies, 2014, pp. 403–414.

[11] Open Flow Switch, Specification, https://www.opennet-
working.org/wp-content/uploads/2014/10/openflow-spec-
v1.3.0.pdf, June 25, 2012.

[12] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer, Dynamic
scheduling of network updates, in Proceedings of the 2014
ACM Conference on SIGCOMM, 2014, pp. 539–550.

[13] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker, Abstractions for network update, in
Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communication, 2012, pp. 323–334.

[14] S. Even, A. Itai, and A. Shamir, On the complexity of time
table and multi-commodity flow problems, in Foundations
of Computer Science, 1975., 16th Annual Symposium on,
1975, pp. 184–193.

[15] ILOG, IBM, CPLEX, V12. 1, Users Manual for Cplex,
2009.

[16] Mininet Team, Mininet overview, http://mininet.org/
overview, 2017.

[17] K. Kannan and S. Banerjee, Compact tcam: Flow entry
compaction in tcam for power aware sdn, in International
Conference on Distributed Computing and Networking,
2013, pp. 439–444.

[18] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber, Hyperx: Topology, routing, and packaging
of efficient large-scale networks, in Proceedings of the
Conference on High Performance Computing Networking,
Storage and Analysis, 2009, p. 41.

[19] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter,
Past: Scalable ethernet for data centers, in Proceedings of
the 8th International Conference on Emerging Networking
Experiments and Technologies, 2012, pp. 49–60.

[20] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken, The nature of data center traffic:
Measurements & analysis, in Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement
Conference, 2009, pp. 202–208.

[21] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat, Hedera: Dynamic flow scheduling for data
center networks, in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), vol. 10, 2010,
p. 19.

[22] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma,
Intelligent sdn based traffic (de) aggregation and
measurement paradigm (istamp), in INFOCOM, 2014
Proceedings IEEE, 2014, pp. 934–942.

[23] Z. Hu and J. Luo, Cracking network monitoring in dcns
with sdn, in Computer Communications (INFOCOM),
2015 IEEE Conference on, 2015, pp. 199–207.

[24] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown,
and R. Johari, Plug-n-serve: Load-balancing web traffic
using openflow, ACM Sigcomm Demo, vol. 4, no. 5, p. 6,
2009.

[25] Y. Nakagawa, K. Hyoudou, C. Lee, S. Kobayashi,
O. Shiraki, and T. Shimizu, Domainflow: Practical
flow management method using multiple flow tables in
commodity switches, in Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and
Technologies, 2013, pp. 399–404.

Gongming Zhao received the BS degree
from Shandong University, China, in
2015. He is currently a PhD candidate
in computer science at the University
of Science and Technology of China.
His main research interests are software
defined network and Internet of Things.

Ziqiang Li received the BS degree
from Chongqing University of Post and
Telecommunications, Chongqing, China,
in 2015. He is currently a master student
in computer science at the University of
Science and Technology of China. His
main research interest is software defined
networks.

452 Tsinghua Science and Technology, August 2018, 23(4): 440–452

Liusheng Huang received the MS degree
in computer science from University of
Science and Technology of China in 1988.
He is currently a professor and PhD
supervisor of the Department of Computer
Science and Technology at the University
of Science and Technology of China. He
has published 6 books and more than

200 papers. His research interests are in the areas of Internet of
Things and information security.

Hongli Xu received the PhD degree in
computer science from the University of
Science and Technology of China in 2007.
He is currently an associate professor
with the School of Computer Science and
Technology, University of Science and
Technology of China. He has authored
over 70 papers, and held about 30 patents.

His main research interest is software defined networks,
cooperative communication, and vehicular ad hoc network.

